相対論的マクスウェル方程式のTシャツ
「EMANの物理学」や「趣味で物理学シリーズ」でおなじみの広江克彦さんは、最近物理学グッズの物販にも活動の幅を広げていらっしゃっている。掲載画像のような新商品を発売された。
Eman Physics - 物理学ライフを楽しくします。(物販サイト)
http://emanphysics.saleshop.jp/
マクスウェルの方程式は下のTシャツに書かれている4本の式であらわされ、電磁気学の基礎方程式とみなされている。この方程式からマクスウェルは電磁波の存在を予言し、1888年にヘルツによって電磁波は実証された。(参考ページ: 「電波は誰が発見したの?」)
このマクスウェルの方程式に電磁ポテンシャルを導入して、相対論的(時空の4次元の形にする)にまとめると、なんとたった1本の式に集約されてしまうのだ。
トップの掲載画像は新商品のTシャツで、1本にまとめられた方程式がプリントされている。電磁気学の4つの法則が4次元の時空では1つに見えることをあらわしている非常に美しい方程式だ。
しかし式の導出方法は物理学専攻の学生にとっては特に難しいものではない。EMANの物理学では次のように導出している。
ステップ1)電磁ポテンシャル(EMANの電磁気学)
http://eman-physics.net/electromag/potential.html
ステップ2)ゲージ変換(EMANの電磁気学)
http://eman-physics.net/electromag/gauge.html
ステップ3)相対論的なマクスウェル方程式(EMANの相対性理論)
http://eman-physics.net/relativity/maxwell.html
でも世界で初めてこの式の導出を行ったのは誰なのだろう?そうツイートしたところ、広江さんもご存知でないようだった。
ええっ、広江さんも知らないの??
アインシュタインが生まれた1879年にマクスウェルは亡くなっているのだから、この式を導いたのはもちろんマクスウェルではない。相対性理論を導いたアインシュタインでもないだろうし、ましてその先の相対論的量子力学を始めたディラックでもなさそうだ。導出手順は比較的やさしいので、論文で発表するほどでもなかったのだろうか?
「アインシュタイン選集1」と「アインシュタイン選集2」を調べてみた。特殊相対論を発表したころアインシュタインの電気力学は電磁ポテンシャルやテンソルを使わない形で書かれていたし、テンソル計算が使われている一般相対論の論文に電気力学についてのものは見当たらなかった。
もしこの式の歴史的背景や初めて導いたのが誰なのかご存知の方がいらっしゃったら、ぜひ教えていただきたい。
----------
その後、広江さんから次のことをツイッターでご連絡いただきました。
ワイルが1918年に、「電磁気、重力の統一の試みにゲージ理論を考案使用」とありますね。 「電磁気学への一般相対論の手法導入への挑戦」とも。 (今は見られなくなっているオヤオヤ文庫さんのサイト情報です)
ベクトルポテンシャルの意義が見直されるのがいつ頃かというのも関係ありそうですね。 ゲージ変換はもっと早めに行われていそうですけど。
参考文献は、湯川秀樹 井上健編集 世界の名著66 現代の科学II(中央公論社)1970 だそうです。
ワイルの「空間・時間・物質(ちくま学芸文庫)」を確認してみたところ、なるほど下巻の最後のほうの「§40 電磁場の幾何学的表現」というセクションに重力場における電磁場の式が導出されていました。しかし、これは一般相対論と電磁場の統一のことです。今知りたいのは特殊相対論と電磁場の統一の式です。
また、たくさんの物理学書を翻訳された樺沢宇紀先生は次のようにツイートされています。
「ダランベルシャン記号(▢)を最初に使ったのは誰か?というのも気になるなあ。クライン=ゴルドンあたりかなあ?(完全なあてずっぽう)教えてもらいたい。」
「4元ポテンシャルの式は不明ですが、A.パイスのアインシュタイン評伝『神は老獪にして・・・』の中に、ミンコフスキーの1908年の論文で「マクスウェル-ローレンツ方程式が初めて現代のテンソル形式で提示され」たという記述あり(p193)。」
「実質的にローレンツ条件下での▢A=-jに相当する式は、ポアンカレの1905年の論文に既に見られますね(式(1))。テンソル形式では書き下してないみたい(?)。
https://en.wikisource.org/?curid=664793#.C2.A7_1._.E2.80.94_Lorentz_transformation」
そしてツイッターやFacebookでお世話になっているおがわけんたろうさんは、次のようにおっしゃっています。
「さらに微分形式に翻訳したのは誰なんだろう。ここまでまとまるともう一歩ですよね。」
「この辺の歴史の本あっても良いと言うか・・・調べてまとめると好事家の興味は引きそうなんですが、問題はどの分野がどの時期に現代に通用するように整備されたかとかそういうのも関係しそうで、かなり広範な知識と調査が必要そうですね。誰かそういう仕事やらない・・・よなあw」
「当初の目的と言う論点では、ポアンカレの論文と言うことで良さそうですね。テンソル形式は少し調べてみれば結構さくっと出てきそう。微分形式の場合は、おそらくゲージ理論と微分幾何学の接点、解析力学あたりを突っ込んでいかないと・・・こりゃ深そう。」
「太田氏の電磁気学の基礎II489ページのミンコフスキーの1908年の…と言うのは、これと思われる。おそらく共変形式はこれが初出であろうと思いますがどうでしょう。
https://en.m.wikisource.org/wiki/Translation:The_Fundamental_Equations_for_Electromagnetic_Processes_in_Moving_Bodies」
もしかすると僕はパンドラの箱を開けてしまったのかもしれませんね。
関連記事:
趣味で相対論:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/7faaca22d6b525d82e45a5724fef9811
趣味で相対論:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/90aa60383b600ff4e4fd7bea6589deaa
趣味で量子力学:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/3023098b9c5204d626808aa57823c16f
ブログ執筆のはげみになりますので、1つずつ応援クリックをお願いします。
とね日記は長年放置されている科学ブログランキングの不正クリックに対し、次のランキングサイトには適切な運営を期待します。
「人気ブログランキング(科学)」、「FC2自然科学ブログランキング」
(不正クリックブログの見分け方)
「EMANの物理学」や「趣味で物理学シリーズ」でおなじみの広江克彦さんは、最近物理学グッズの物販にも活動の幅を広げていらっしゃっている。掲載画像のような新商品を発売された。
Eman Physics - 物理学ライフを楽しくします。(物販サイト)
http://emanphysics.saleshop.jp/
マクスウェルの方程式は下のTシャツに書かれている4本の式であらわされ、電磁気学の基礎方程式とみなされている。この方程式からマクスウェルは電磁波の存在を予言し、1888年にヘルツによって電磁波は実証された。(参考ページ: 「電波は誰が発見したの?」)
このマクスウェルの方程式に電磁ポテンシャルを導入して、相対論的(時空の4次元の形にする)にまとめると、なんとたった1本の式に集約されてしまうのだ。
トップの掲載画像は新商品のTシャツで、1本にまとめられた方程式がプリントされている。電磁気学の4つの法則が4次元の時空では1つに見えることをあらわしている非常に美しい方程式だ。
しかし式の導出方法は物理学専攻の学生にとっては特に難しいものではない。EMANの物理学では次のように導出している。
ステップ1)電磁ポテンシャル(EMANの電磁気学)
http://eman-physics.net/electromag/potential.html
ステップ2)ゲージ変換(EMANの電磁気学)
http://eman-physics.net/electromag/gauge.html
ステップ3)相対論的なマクスウェル方程式(EMANの相対性理論)
http://eman-physics.net/relativity/maxwell.html
でも世界で初めてこの式の導出を行ったのは誰なのだろう?そうツイートしたところ、広江さんもご存知でないようだった。
ええっ、広江さんも知らないの??
アインシュタインが生まれた1879年にマクスウェルは亡くなっているのだから、この式を導いたのはもちろんマクスウェルではない。相対性理論を導いたアインシュタインでもないだろうし、ましてその先の相対論的量子力学を始めたディラックでもなさそうだ。導出手順は比較的やさしいので、論文で発表するほどでもなかったのだろうか?
「アインシュタイン選集1」と「アインシュタイン選集2」を調べてみた。特殊相対論を発表したころアインシュタインの電気力学は電磁ポテンシャルやテンソルを使わない形で書かれていたし、テンソル計算が使われている一般相対論の論文に電気力学についてのものは見当たらなかった。
もしこの式の歴史的背景や初めて導いたのが誰なのかご存知の方がいらっしゃったら、ぜひ教えていただきたい。
----------
その後、広江さんから次のことをツイッターでご連絡いただきました。
ワイルが1918年に、「電磁気、重力の統一の試みにゲージ理論を考案使用」とありますね。 「電磁気学への一般相対論の手法導入への挑戦」とも。 (今は見られなくなっているオヤオヤ文庫さんのサイト情報です)
ベクトルポテンシャルの意義が見直されるのがいつ頃かというのも関係ありそうですね。 ゲージ変換はもっと早めに行われていそうですけど。
参考文献は、湯川秀樹 井上健編集 世界の名著66 現代の科学II(中央公論社)1970 だそうです。
ワイルの「空間・時間・物質(ちくま学芸文庫)」を確認してみたところ、なるほど下巻の最後のほうの「§40 電磁場の幾何学的表現」というセクションに重力場における電磁場の式が導出されていました。しかし、これは一般相対論と電磁場の統一のことです。今知りたいのは特殊相対論と電磁場の統一の式です。
また、たくさんの物理学書を翻訳された樺沢宇紀先生は次のようにツイートされています。
「ダランベルシャン記号(▢)を最初に使ったのは誰か?というのも気になるなあ。クライン=ゴルドンあたりかなあ?(完全なあてずっぽう)教えてもらいたい。」
「4元ポテンシャルの式は不明ですが、A.パイスのアインシュタイン評伝『神は老獪にして・・・』の中に、ミンコフスキーの1908年の論文で「マクスウェル-ローレンツ方程式が初めて現代のテンソル形式で提示され」たという記述あり(p193)。」
「実質的にローレンツ条件下での▢A=-jに相当する式は、ポアンカレの1905年の論文に既に見られますね(式(1))。テンソル形式では書き下してないみたい(?)。
https://en.wikisource.org/?curid=664793#.C2.A7_1._.E2.80.94_Lorentz_transformation」
そしてツイッターやFacebookでお世話になっているおがわけんたろうさんは、次のようにおっしゃっています。
「さらに微分形式に翻訳したのは誰なんだろう。ここまでまとまるともう一歩ですよね。」
「この辺の歴史の本あっても良いと言うか・・・調べてまとめると好事家の興味は引きそうなんですが、問題はどの分野がどの時期に現代に通用するように整備されたかとかそういうのも関係しそうで、かなり広範な知識と調査が必要そうですね。誰かそういう仕事やらない・・・よなあw」
「当初の目的と言う論点では、ポアンカレの論文と言うことで良さそうですね。テンソル形式は少し調べてみれば結構さくっと出てきそう。微分形式の場合は、おそらくゲージ理論と微分幾何学の接点、解析力学あたりを突っ込んでいかないと・・・こりゃ深そう。」
「太田氏の電磁気学の基礎II489ページのミンコフスキーの1908年の…と言うのは、これと思われる。おそらく共変形式はこれが初出であろうと思いますがどうでしょう。
https://en.m.wikisource.org/wiki/Translation:The_Fundamental_Equations_for_Electromagnetic_Processes_in_Moving_Bodies」
もしかすると僕はパンドラの箱を開けてしまったのかもしれませんね。
関連記事:
趣味で相対論:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/7faaca22d6b525d82e45a5724fef9811
趣味で相対論:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/90aa60383b600ff4e4fd7bea6589deaa
趣味で量子力学:広江克彦
http://blog.goo.ne.jp/ktonegaw/e/3023098b9c5204d626808aa57823c16f
ブログ執筆のはげみになりますので、1つずつ応援クリックをお願いします。
とね日記は長年放置されている科学ブログランキングの不正クリックに対し、次のランキングサイトには適切な運営を期待します。
「人気ブログランキング(科学)」、「FC2自然科学ブログランキング」
(不正クリックブログの見分け方)