Quantcast
Channel: とね日記
Viewing all articles
Browse latest Browse all 976

Cube root 12,895,213,625 using abacus (Triple-root method 10)

$
0
0
[Set 12,895,213,625 on Mr. Cube root]Zoom

[Japanese]

Today's example is also about actual solution of Cube root using abacus. The calculation becomes more complicated than previous example.

Today's example is simple - basic Triple-root method, root is 4-digits case. Please check the Theory page for your reference.

Cube root methods: Triple-root method, constant number method, 3a^2 method, 1/3-division method, 1/3-multiplication table method, 1/3-multiplication table alternative method, Multiplication-Subtraction method, 3-root^2 method, Mixing method, Exceed number method, Omission Method, etc.


Abacus steps to solve Cube root of 12,895,213,625
(Answer is 2,345)

"1st group number" is the left most numbers in the 3-digits groups of the given number for cube root calculation. Number of groups is the number of digits of the Cube root.

12,895,213,625 -> (12|895|213|625): 12 is the 1st group number. The root digits is 4.


Step 1: Set 12895213625. First group is 12.


Step 2: Cube number smaller than 12 is 8=2^3. Place 2 on E as 1st root.


Step 3: Place 12-8=04 on HI. ( -a^3)


Step 4: Place Triple root 3x2=6 on B.


Step 5: Repeat division by triple root 6 until 4th digits next to 1st root. ( /3a)


Step 6: 48/6=8 remainder 0. Place 8 on G.


Step 7: Place remainder 00 on IJ.


Step 8: 9/6=1 remainder 3.


Step 9: Place 1 on I.


Step 10: Place remainder 3 on K.


Step 11: Divide 0 on F by current root 2.


Step 12: Get 3 as 2nd root and place it on F.


Step 13: Place 8-2x3=2 on H.


Step 14: Subtract 2nd root^2 from 21 on HI. ( -b^2)


Step 15: Place 21-3^2=12 on HI.


Step 16: Multiply triple root 6 by remainder 12 on HI. 6X12=72


Step 17: Replace 12 by 00 on HI.


Step 18: Add 72 to 03 on JK.


Step 19: It means place 03+72=75 on JK.


Step 20: Subtract 2nd root^3 from 755 on JKL. ( -b^3)


Step 21: It means place 755-3^3=728 on JKL.


Step 22: Add 3x2nd root to triple root on BC.


Step 23: Place 60+3x3=69 on BC.


Step 24: Repeat division by triple root 69 until fixed position.


Step 25: 72/69=1 remainder 3. Place 1 on H.


Step 26: Place remainder 03 on JK.


Step 27: 38/69=0 remainder 38


Step 28: Place 0 on I. Place remainder 38 on KL.


Step 29: 382/69=5 remainder 37


Step 30: Place 5 on J.


Step 31: Place remainder 037 on JKL.


Step 32: 371/69=5 remainder 26


Step 33: Place 5 on K.


Step 34: Place remainder 026 on LMN.


Step 35: Divide 105 on HIJ by current root 23. 105/23=4 remainder 13


Step 36: Place 4 on G as 3rd root.


Step 37: Place remainder 013 on HIJ.


Step 38: Subtract 3rd root^2 from 135 on IJK. ( -c^2)


Step 39: Place 135-4^2=119 on IJK.


Step 40: Multiply triple root 69 by remainder 119 on IJK. 69X119=8211


Step 41: Replace 119 by 000 on IJK.


Step 42: Add 8211 to 0026 on KLMN.


Step 43: It means place 0026+8211=8237 on KLMN.


Step 44: Subtract 3rd root^3 from 73 on NO. ( -c^3)


Step 45: Place 73-4^3=09 onNO.


Step 46: Add 3x3rd root to triple root on BCD.


Step 47: Place 690+3x4=702 on BCD.


Step 48: Repeat division by triple root 702 until fixed position.


Step 49: 823/702=1 remainder 121. Place 1 on I.


Step 50: Place remainder 121 on KLM.


Step 51: 1210/702=1 remainder 508


Step 52: Place 1 on J.


Step 53: Place remainder 0508 on KLMN.


Step 54: 5089/702=7 remainder 175


Step 55: Place 7 on K.


Step 56: Place remainder 0175 on LMNO.


Step 57: 1756/702=2 remainder 352


Step 58: Place 2 on L.


Step 59: Place remainder 0352 on MNOP.


Step 60: 3522/702=5 remainder 12


Step 61: Place 5 on M.


Step 62: Place remainder 0012 on NOPQ.


Step 63: Divide 1172 on JKLM by current root 234. 1172/234=5 remainder 2


Step 64: Place 5 on G as 4th root.


Step 65: Place remainder 0002 on IJKL.


Step 66: Subtract 4th root^2 from 25 on LM. ( -d^2)


Step 67: Place 25-5^2=00 on LM.


Step 68: Subtract 4th root^3 from 125 on PQR. (-d^2)


Step 69: Place 125-5^3=000 on PQR.


Step 70: Cube root of 12895213625 is 2345.


Final state: Answer 2345

Abacus state transition. (Click to Zoom)





Related articles:

How to solve Cube root of 1729.03 using abacus? (Feynman v.s. Abacus man)
http://blog.goo.ne.jp/ktonegaw/e/cff5d6e7ecaa07230b9cc7af10b23aed

Index: Square root and Cube root using Abacus
http://blog.goo.ne.jp/ktonegaw/e/f62fb31b6a3a0417ec5d33591249451b


Please place your mouse on the buttons and click one by one. These are blog ranking sites.
にほんブログ村 科学ブログ 物理学へ 人気ブログランキングへ 

Viewing all articles
Browse latest Browse all 976

Trending Articles