Quantcast
Channel: とね日記
Viewing all articles
Browse latest Browse all 976

Cube root 5,735,339 using abacus (Triple-root method 9)

$
0
0
[Set 5,735,339 on Mr. Cube root]Zoom

[Japanese]

Today's example is also about actual solution of Cube root using abacus. The calculation becomes more complicated than previous example.

Today's example is simple - basic Triple-root method, root is 3-digits case and requires excessive root modification. Please check the Theory page for your reference.

Cube root methods: Triple-root method, constant number method, 3a^2 method, 1/3-division method, 1/3-multiplication table method, 1/3-multiplication table alternative method, Multiplication-Subtraction method, 3-root^2 method, Mixing method, Exceed number method, Omission Method, etc.


Abacus steps to solve Cube root of 5,735,339
(Answer is 179)

"1st group number" is the left most numbers in the 3-digits groups of the given number for cube root calculation. Number of groups is the number of digits of the Cube root.

5,735,339 -> (5|735|339): 5 is the 1st group number. The root digits is 3.


Step 1: Set 5735339. First group is 5.


Step 2: Cube number smaller than 5 is 1=1^3. Place 1 on E as 1st root.


Step 3: Place 5-1=4 on I. ( -a^3)


Step 4: Place Triple root 3x1=3 on B.


Step 5: Repeat division by triple root 3 until 4th digits next to 1st root. (/3a)


Step 6: 4/3=1 remainder 1. Place 1 on G.


Step 7: Place remainder 1 on I.


Step 8: 17/3=5 remainder 2.


Step 9: Place 5 on H.


Step 10: Place remainder 02 on IJ.


Step 11: 23/3=7 remainder 2.


Step 12: Place 7 on I.


Step 13: Place remainder 02 on JK.


Step 14: Place 8 on F as 2nd root according to the calculation rule.


Step 15: Divide 15 on GH by 2nd root. 15/8=1 remainder 7.


Step 16: Place 07 on GH.


Step 17: Subtract 2nd root^2 from 77 on HI. ( -b^2)


Step 18: It means place 77-8^2=13 on HI.


Step 19: Multiply triple root=3 by remainder 13 on HI. 3X13=39


Step 20: Set 00 on HI.


Step 21: Add 39 to 0002 on HIJK. 39+2=41


Step 22: It means place 0041 on HIJK.


Step 23: Cannot subtract 8^3 from 415 on JKL. 8 is excessive root. Subtract 1 from 8. Place 7 on F.


Step 24: Give back 10+8+7=25 on HI.


Step 25: Multiply triple root=3 by remainder 25 on HI. 3X25=75


Step 26: Set 00 on HI.


Step 27: Add 75 to 041 on IJK.


Step 28: It means place 041+75=116 on IJK.


Step 29: Subtract 2nd root^3 from 1165 on IJKL. 1165-7^3=822 ( -b^3)


Step 30: Place 0822 on IJKL.


Step 31: Add 3x2nd root to triple root 30. Place 30+21=51 on BC.


Step 32: Repeat division by triple root 51 from J.


Step 33: 82/51=1 remainder 31. Place 1 on H. Place remainder 31 on JK.


Step 34: 312/51=6 remainder 6. Place 6 on I.


Step 35: Place remainder 006 on JKL.


Step 36: 63/51=1 remainder 12. Place 1 on J.


Step 37: Place remainder 12 on LM.


Step 38: 123/51=2 remainder 21. Place 2 on K.


Step 39: Place remainder 021 on LMN.


Step 40: Divide 161 by current root 17. 161/17=9 remainder 8.


Step 41: Place 9 on G as 3rd root.


Step 42: Place remainder 008 on HIJ.


Step 43: Subtract 3rd root^2 from 82. 82-9^2=1 ( -c^2)


Step 44: Place 01 on JK.


Step 45: Multiply triple root=51 by remainder 01 on JK. 51X1=51


Step 46: Set 00 on JK.


Step 47: Add 51 to 21 on MN. 21+51=72.


Step 48: Place 72 on MN.


Step 49: Subtract 3rd root^3 from 729 on MNO. ( -c^3)


Step 50: Place 729-9^3=000 on MNO.


Step 51: Cube root of 5735339 is 179.


Final state: Answer 179

Abacus state transition. (Click to Zoom)




Next article is also about Cube root calculation (Triple-root method).


Related articles:

How to solve Cube root of 1729.03 using abacus? (Feynman v.s. Abacus man)
http://blog.goo.ne.jp/ktonegaw/e/cff5d6e7ecaa07230b9cc7af10b23aed

Index: Square root and Cube root using Abacus
http://blog.goo.ne.jp/ktonegaw/e/f62fb31b6a3a0417ec5d33591249451b


Please place your mouse on the buttons and click one by one. These are blog ranking sites.
にほんブログ村 科学ブログ 物理学へ 人気ブログランキングへ 

Viewing all articles
Browse latest Browse all 976

Trending Articles